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We analyze a quantum dot strongly coupled to the conducting leads via quantum point contacts, Fano regime
of transport, and report a variety of resonant states which demonstrate the dominance of the interacting
resonances in the scattering process in a low confining potential. There are resonant states similar to the
eigenstates of the isolated dot, whose widths increase with increasing the coupling strength to the environment,
and hybrid resonant states. The last ones are approximately obtained as a linear combination of eigenstates with
the same parity in the lateral direction and the corresponding resonances show the phenomena of resonance
trapping or level repulsion. The existence of the hybrid modes suggests that the open quantum dot behaves in
the Fano regime like an artificial molecule.
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I. INTRODUCTION

In the past decades quantum dots were among the most
studied systems in the solid-state physics.1,2 Proposed in the
1980s as a system to minimize losses in the optical fiber,3

quantum dots have currently become a subject for fundamen-
tal research as artificial atoms.3 Here the typical properties of
an isolated natural atom1,4,5 are qualitatively reproduced even
in the presence of the interaction with the environment.6

An artificial atom is a system created in a semiconductor
heterostructure consisting of few electrons isolated from the
environment by tunable barriers.1,3 These noninfinite barriers
allow for attaching conducting leads that open the quantum
dot for transport whereas the properties of the isolated dot
survive to a certain degree depending on the coupling
strength. From the mathematical point of view, the quantum
system admits on each transport direction a continuous en-
ergy spectrum with resonances instead of a set of discrete
eigenenergies. In the case of very high barriers �weak cou-
pling� the discrete energy levels of the isolated system turn
into quasibound states. These are isolated resonances with an
extremely small imaginary part, i.e., long lifetime, whose
real part can be well approximated by the eigenenergies of
the isolated dot.7 At weak coupling the physics of the trans-
port phenomena is dominated by the electron-electron inter-
action that induces a shift of the resonant states8 and the
quantum dot follows the Coulomb-blockade regime.1,9 De-
creasing the confinement barriers of the dot the coupling
with the conducting leads increases and both, the tunneling
phenomena and the spin interaction10,11 become more and
more important relatively to the Coulomb interaction. In this
intermediate regime the total transmission through the quan-
tum dot shows broad and slightly asymmetric peaks, the so-
called Kondo resonances,6,10 which are sensitive to the shape
and the height of the confining barriers.12 Upon further de-
creasing of the confining barriers the dot reaches the strong-
coupling regime. Here the total transmission through the
quantum dot shows asymmetric peaks and dips on a slowly
varying background.6,13,14 These peaks exhibit a Fano line

shape15 with a complex asymmetry parameter. They are nar-
rower compared to the ones in the intermediate regime.6 In
the last years a number of studies were reported considering
various specific aspects of transport in the strong-coupling
regime within noninteracting models.7,12,16–22 However, a
satisfactory theory providing a complete description of the
scattering mechanisms in the low confinement potential6,11 at
strong-coupling does not exist. A particular difficulty, in this
type of scattering potential is the high level density in the
quantum system. As known from the particle physics, the
methods used for describing quantum systems with a low
level density, as the light atoms or nuclei, are not applicable
for heavy nuclei with a high level density.23,24 For the meso-
scopic physics, this means that the scattering problem re-
quires a different treatment for quantum systems in the
strong coupling compared to the Coulomb-blockade regime.

In the strong-coupling regime, the electron scattering is
profoundly affected by the quantum interferences.25 The in-
distinguishability of the identical quantum particles leads to
the interference25 between electrons and consequently to the
Fano effect.15,18,26 To explain this effect, often the existence
of two interfering pathways or channels is invoked, one of
which is resonant while the other is nonresonant. In the ex-
periments in Ref. 13 there are two spatially well-defined in-
terference paths consisting of the two arms of the Aharonov-
Bohm ring.13,20 The arm in which a quantum dot is
embedded defines the resonant path. In the experiments of
Göres et al.6 there are no such clearly spatially separated
interference paths and the understanding of the Fano effect in
this case is not straightforward. Clerk et al.7 proposed as a
nonresonant path a trajectory directly connecting the source
and the drain contacts and as the resonant one a path passing
through the dot via a resonant state and therefore spending a
longer time in the dot. In this way, under certain conditions,
the complex asymmetry parameter of a single resonance is
associated with the dephasing time in the quantum system. In
the frame of this model, the quite narrow and strong asym-
metric �“S-type” Fano� lines are found under the assumption
that the quantum dot is coupled to two single-mode leads,
but the slowly varying background is not explained. In Ref.
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21 another model is discussed, in which the interfering paths
are associated with the energy channels �subbands� of the
leads: one of them contains a resonance or a group of over-
lapping resonances at the energy of the incoming electron
while the second one contains only propagating states at this
energy. As the result of the interference, asymmetric Fano
lines with a complex parameter are obtained. In the presence
of a scattering potential which couples the two channels it is
shown that an interaction between resonances corresponding
to different channels occurs, and this interaction exhibits dips
in the total transmission for a favorable parity of the resonant
states. As a second effect of the coupling between the scat-
tering channels, the positions of the resonances correspond-
ing to different channels are strongly modified in the com-
plex energy plane. In the strong-coupling regime the
information about the scattering channels is actually not rel-
evant for understanding the interaction between resonances.

The above results confirm our earlier idea16 to define the
interfering paths using the resonances, i.e., the complex ei-
genvalues of the non-Hermitian Hamilton operator of the
open system,19 instead of the quantum numbers of the lateral
problem in the leads �scattering channel numbers�. The reso-
nances are also the singularities of the scattering matrix in
the complex energy plane and, based on the decomposition
of the S matrix in a resonant and a background term,16 we
have associated the interfering paths in a more formal way
with these two terms. In the limit of a quasi-one-dimensional
�1D� model we have proven that the Fano function with a
complex asymmetry parameter arises as the most general
resonance line shape under the assumption that the back-
ground can be considered constant over the width of the
resonance pole. The asymmetry parameter of the Fano line
reflects the strength of the interaction between the considered
resonance and the background which contains the contribu-
tions of all other resonances. These results were later con-
firmed in Refs. 19 and 22. For decoupled scattering channels
the Fano lines are only slightly asymmetric. The strong
asymmetric ones, like those found by Göres et al.,6 imply the
existence of many channels in the leads which can be
coupled by dint of a nonseparable two-dimensional �2D�
scattering potential.21,22 As mentioned in Ref. 21 the interac-
tion between channels changes the shape of the resonances
dramatically.

In this paper we develop a resonant scattering theory that
takes properly into account the mentioned high level density
in the quantum system as well as a strong coupling of the
scattering channels in a nonseparable scattering potential. In
view of Ref. 7 we assume that there exist direct trajectories
which connect the source and the drain contacts, i.e., the
potential energy in the region of the point contacts lies under
the Fermi energy. According to the scanning electron micro-
scope image of the system,6 the quantum point contacts are
very short and the leads are wide, allowing for a few sub-
bands. The number of the conducting channels in the source
and drain contacts is essential for the coupling mechanism of
the quantum dot to the contacts. In the strong-coupling re-
gime and for a quantum system with a high level density,
they limit the number of the eigenstates which couple to the
continuum. The other eigenstates become consequently qua-
sibound states.23,24

We believe that, for a deep understanding of the transmis-
sion through a quantum dot in the strong-coupling regime, a
resonant theory for two-dimensional systems is indispens-
able. In our opinion a resonant perturbation theory on the
base of the Feshbach formalism21 is not sufficient for an
accurate description of the strong coupling between the scat-
tering channels. The resonances characterize the 2D scatter-
ing potential and a direct solution of the 2D Schrödinger
equation cannot be avoided at least in the strong-coupling
regime. For this purpose we use here the R-matrix
method16,27–31 and extend our scattering theory for 1D sys-
tems without spherical symmetry16 to the case of 2D sys-
tems. The R-matrix formalism is a very powerful method
which allows for an efficient procedure to determine the
resonances and for an exact decomposition of the scattering
matrix into resonant and nonresonant contributions around
each resonance.16 The second advantage of using the
R-matrix formalism is that the scattering theory can be ex-
tended to describe the wave functions inside the scattering
area. In this way the electron probability distribution density
within the dot region can be analyzed and the resonant states
can be compared with the atomic orbitals. The coupling be-
tween the scattering channels leads to the occurrence of the
hybrid resonant modes. Similar hybrid modes have also been
evidenced in rectangular electromagnetic resonators32 yield-
ing a coupled mode with low radiation losses and a high Q
factor. As their atomic orbital counterparts, for example, in
H2O molecules, hybrid resonant modes arise in response to
external perturbations of the isolated quantum system. While
for atoms this perturbation consists of the molecular fields,
for quantum dots the perturbation is the interaction with the
conducting leads.

II. MODEL

We provide a model for transport through a quantum dot
that can be analyzed individually, such as a single-electron
transistor �SET�.4,6,10,11 The dot is embedded in a quite wide
and infinitely long quantum wire, isolated inside a 2D elec-
tron gas �2DEG� by infinite barriers, V�x , �y��dy�→�. In-
side the wire the dot is defined by the barrier Vb�x ,y�, which
can have a general form �nonseparable and without any sym-
metry� like the black area in Fig. 1. At y=0 there are two
quantum point contacts that ensure a strong coupling be-
tween the quantum dot and the rest of the wire, which plays
the role of the source and drain contacts. The contacts are
characterized by constant potentials Vs with s=1 for the
source and s=2 for the drain. In the middle of the dot region
the potential energy Vd is constant and can be varied continu-
ously by a plunger gate. Further, we make the assumption
that there are no bound states in our system, i.e.,
min�V1 ,V2�=min�V�x ,y��, ∀x, �y��dy.

The electronic wave functions are solutions of the two-
dimensional Schrödinger equation

�−
�2

2m�� �2

�x2 +
�2

�y2� + V�x,y�	��x,y� = E��x,y� �1�

with the general nonseparable potential V�x ,y� in the dot
region; E denotes here the kinetic energy of the electron in

RACEC, WULF, AND RACEC PHYSICAL REVIEW B 82, 085313 �2010�

085313-2



the plane of 2DEG, and m� its effective mass. The Fermi
energy33 for the 2D problem is fixed by the electron density
NS of 2DEG, EF=�NS�2 /gvm�, where gv is the valley degen-
eracy factor.

The electronic transport through a single quantum dot is
essentially a scattering process34,35 for which the potential
energy has a spatial dependence only within a quite small
region of the structure called scattering region ��x��dx , �y�
�dy� and is constant outside it. As usual in the scattering

theory36 this type of problem is solved using different meth-
ods for these two regions of the structure and the solutions
are connected based on the continuity conditions of the wave
function and its first derivative.

Outside the scattering region the Schrödinger equation is
exactly solvable and, as usual in the scattering theory, those
solutions are superpositions of one incident and many scat-
tered waves,

�n
�s��E;x,y� =

��Ns�E� − n�

2� �	s1 exp�ik1n�x + dx��
n�y� + �

n�=1

�

Ssn,1n�
T �E�exp�− ik1n��x + dx��
n��y� , x � − dx

	s2 exp�− ik2n�x − dx��
n�y� + �
n�=1

�

Ssn,2n�
T �E�exp�ik2n��x − dx��
n��y� , x � dx,
 �2�

n�1, s=1,2, where � denotes the step function, i.e., ��t�
=1 for t�0 and ��t�=0 for t�0, and 	ss� the Kronecker
delta symbol, i.e., 	ss�=1 for s=s� and 	ss�=0 for s�s�. The
solutions, Eq. �2�, of the Schrödinger equation are called
scattering functions and the matrix S is the generalized scat-
tering matrix37 or the wave transmission coefficients matrix.
This is an infinite-dimensional matrix, which connects in-
coming and outgoing components of the wave functions. T
denotes here the transpose matrix. Due to the electron con-
finement in the infinite quantum well in the y direction the
functions 
n�y� are given as


n�y� =
1


dy

sin� �n

2dy
�y + dy�	, n � 1 �3�

and the corresponding eigenenergies are

E�n =
�2

2m�� �

2dy
�2

n2. �4�

The quantum numbers n associated with the lateral problem
define the energy channels for transport on each side of the
scattering area, the so-called scattering channels. The wave
vectors are defined for every channel �sn� as

ksn�E� = k0

�E − E�n − Vs�/u0, �5�

where k0=� /2dx and u0=�2k0
2 /2m�. In the case of the con-

ducting or open channels, ksn are positive real numbers,
while for the nonconducting or closed channels they are
given from the first branch of the complex square-root func-
tion, ksn= i�ksn�. Thus, the number of the conducting channels,
Ns�E�, s=1,2, is a function of energy, and, for a fixed energy
E, this is the largest value of n which satisfies the inequality
E−E�n−Vs�0 for a given value of s. The scattering func-
tions exist only for the conducting channels.

In the limit of a very low potential, i.e., V�x ,y�→0, the
scattering functions become plane wave corresponding to the
free electrons. In the presence of a scattering potential with a
nonseparable character a plane wave incident onto the scat-
tering area is reflected on every channel, open or closed for
transport, of the same side of the system and transmitted on
every channel, open or closed for transport, on the other side,
the probability of each process being related to the elements
of the generalized scattering matrix S. The � function in Eq.
�2� restricts the number of the elements with a physical
meaning in S to N1�E�+N2�E� columns for each energy E.

For further determining the generalized scattering matrix
S, the Schrödinger Eq. �1� should be also solved inside the
scattering area. In this domain the potential landscape does
not generally allow for analytical solutions and we have cho-
sen to solve Eq. �1� by means of the R-matrix formalism.27,28

Besides the extreme numerical efficiency,31 this powerful
method allows for a direct comparison between the open

dy

V(x,y)=V1 V(x,y)=V2

−dx dx

−dy

Source Drain

x

y

VdVb1 Vb2

FIG. 1. �Color online� Potential energy in the quantum wire:
constant potential energy in the source and drain contacts, V1 and
V2, respectively, and position-dependent potential energy in the
scattering region ��x��dx , �y��dy�. The quantum dot is isolated in-
side the quantum wire by the barrier �black area� with the height
Vb0 and the width db. The coupling between dot and contacts is set
by the potential energy in the point contact regions, Vb1 and Vb2.
The constant potential energy felt by the electrons inside the dot is
Vd. At the interface between different domains the potential energy
varies linearly with position. Dark corresponds to high values and
bright corresponds to low values.
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quantum dot and its closed counterpart. In the frame of the
R-matrix formalism,16,27–31 the scattering functions within
the dot region,

�n
�s��E;x,y� = �

l=1

�

aln
�s��E��l�x,y� , �6�

�x��dx and �y��dy are expressed in terms of the eigenfunc-
tions �l corresponding to the quantum dot artificially closed
by Neumann boundary conditions at the interfaces with the
contacts

� ��l

�x
�

x=
dx

= 0, �7�

l�1. Thus, the so-called Wigner-Eisenbud functions �l�x ,y�
satisfy the same equation as �n

�s��x ,y�, Eq. �1�, but with dif-
ferent boundary conditions in the transport direction: Since
the scattering states �n

�s��x ,y� satisfy scattering, i.e., energy-
dependent, boundary conditions derived from Eq. �2� due to
the continuity of the scattering functions at x= 
dx, the
Wigner-Eisenbud functions �l�x ,y� have to satisfy energy-
independent boundary conditions given by Eq. �7�. The infi-
nite potential outside the quantum wire requires Dirichlet
boundary conditions on the surfaces perpendicular to the
transport direction for both functions, �n

�s��x ,y= 
dy�=0 and
�l�x ,y= 
dy�=0. The potential energy for the Wigner-
Eisenbud problem is given in Fig. 2�a�. As eigenfunctions of
a Hermitian Hamilton operator the functions �l, l�1, build a
basis. The corresponding eigenenergies are denoted by El
and are called Wigner-Eisenbud energies. They are real.

The expansion coefficients aln
�s��E� are calculated using the

Wigner-Eisenbud eigenvalue problem and the boundary con-
ditions satisfied by the scattering functions at the interface
with the contacts. We have presented this method in detail in
Ref. 31. The coefficients aln

�s��E� are obtained as a function of
S and the scattering functions within the dot region have the
expression

�� �E;x,y� =
i


2�
��E��1 − ST�E��K�E�R� �E;x,y� �8�

with �n
�s��E ;x ,y�= ��� �E ;x ,y��sn, n�1, s=1,2, and the R�

vector defined as

R� �E;x,y� =
u0


k0
�
l=1

�
�l�x,y��� l

E − El
. �9�

The vector �� l in Eq. �9� is constructed using the Wigner-
Eisenbud functions at x= 
dx and the eigenmodes corre-
sponding to the lateral problem in the contacts

��� l�sn =
1


k0
�

−dy

dy

dy�l��− 1�sdx,y�
n�y� , �10�

n�1, s=1,2. The wave vectors ksn define the diagonal ma-
trix K,

Ksn,s�n��E� =
ksn�E�

k0
	nn�	ss�. �11�

The matrix � is also a diagonal one defined as �sn,s�n��E�
=��Ns�E�−n�	ss�	nn�, n ,n��1, s ,s�=1,2.

Using further the continuity of the scattering functions on
the surface of the scattering area one can derive a relation
between the R matrix,

R�E� = u0�
l=1

�
�� l�� l

T

E − El
�12�

and the generalized scattering matrix S,

S�E� = �1 − 2�1 + iRK�−1���E� . �13�

Equation �13� is the key relation for solving 2D scattering
problems using only the eigenfunctions and the eigenener-
gies of the closed quantum dot �see Fig. 2�a��. They contain
the information about the scattering potential in the dot re-
gion and carry it over to the R matrix. The matrix K char-
acterizes the contacts and can be constructed using only the
constant values of the potential in these regions. On the basis
of Eq. �13� the generalized scattering matrix S is calculated
and further the scattering functions in each point of the sys-
tem are determined using Eqs. �2� and �8�. The scattering
theory together with the R-matrix formalism allows for a
complete description of the open quantum dot and each
physical parameter of the system can be further derived from
the S matrix.

According to Eq. �12�, R�E� is an infinite-dimensional
symmetrical real matrix and its expression allows for a very
efficient numerical implementation for computing it. The big
advantage of the R-matrix formalism is that, for a given po-
tential landscape, only one eigenvalue problem with energy-
independent boundary conditions, i.e., Wigner-Eisenbud
problem, has to be numerically solved and after that the gen-
eralized scattering matrix S can be constructed for each en-
ergy using Eq. �13�. The computational costs are in this case
minimal and Eq. �13� gives the explicit dependence of S on

(b)(a)

FIG. 2. �Color online� �a� Closed quantum dot by means of
Neumann boundary conditions at the dot-contact interfaces. This is
the potential energy for the Wigner-Eisenbud problem. �b� Isolated
counterpart of the considered open quantum dot �Vb0=Vb1=Vb2

→��. Dark corresponds to high values and bright corresponds to
low values.
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energy. This allows for an analysis of the scattering matrix
and, after that, of the physical properties of the system, in
terms of resonance energies.

The generalized scattering matrix S describes the scatter-
ing processes not only in the asymptotic region but also in-
side the scattering area. But this matrix is neither symmetric
nor unitary as can be seen from Eq. �13�. Further, we define
the current scattering matrix as

S̃ = K1/2�SK−1/2. �14�

The diagonal � matrix in the above expression ensures non-

zero values only for the matrix elements of S̃ that correspond
to conducting channels for which the transmitted flux is non-
zero. For simplicity, we have dropped in Eq. �14� the energy
dependence of the matrixes and we will do this often hence-
forth. Using the R-matrix representation of S, Eq. �13�, the
current scattering matrix becomes

S̃ = ��1 − 2�1 + i��−1�� �15�

with the symmetrical infinite matrix �,

��E� = u0�
l=1

�
�� l�� l

T

E − El
�16�

and the column vector

�� l�E� = K1/2�� l, �17�

l�1. According to Eq. �15� the current scattering matrix S̃ is

also symmetric, S̃= S̃T. The restriction of S̃ matrix to the
conducting channels is the well-known current transmission

matrix,16,30,31 S̃, commonly used in the Landauer-Büttiker
formalism. For a given energy E this is a �N1+N2�� �N1
+N2� matrix which has to satisfy the unitarity condition

S̃S̃†= S̃†S̃=1 according to the flux conservation.37

The elements of the current transmission matrix give di-
rectly the reflection and transmission probabilities through
the quantum dot. For an electron incident from the contact
s=1,2 on the channel n the probability to be transmitted into

the contact s��s on the channel n� is Tnn��E�= �S̃2n�,1n�E��2

= �S̃1n�,2n�E��2. In the case of nonconducting �evanescent�
channels these probabilities are zero. With these consider-
ations, the total transmission through the dot, defined as

T�E� = �
n=1

N1�E�

�
n�=1

N2�E�

Tnn��E� �18�

becomes

T�E� = Tr���E��†�E�� , �19�

where � is the part of S̃ that contains the transmission am-

plitudes, �nn��E�= S̃2n�,1n�E�, and �† its adjoint.

III. RESONANCES

The experimental analysis of a quantum system by cou-
pling it to an electrical circuit has as a consequence the

modification of its state. The physical interpretation of the
measured quantities cannot be based solely on the properties
of the isolated quantum system but rather on the properties
of the open system, i.e., the quantum system coupled to the
contacts. Due to this coupling, the eigenstates become reso-
nant states, some of them are long-lived resonances �called
simply resonances� corresponding to quasibound states1,24

and the other ones are practically delocalized.1,24 They can
be found as states with a short lifetime and it has to be
elucidated if they influence significantly the physical proper-
ties or not. In addition, the resonant states are eigenstates of
the non-Hermitian Hamilton operator23,24 of the open quan-
tum system and they are not orthogonal to each other
anymore.23,24 In principle, they can interact and their cou-
pling may also influence the physical properties.

From the mathematical point of view the resonances are
associated with singularities of the current scattering matrix

S̃. The representation of the S̃ matrix in terms of �, Eq.
�15�, allows for a very fast and efficient numerical procedure
to determine its poles. When the quantum dot becomes open,
the real eigenenergies of the closed system, El, migrate in the
lower part of the complex energy plane, becoming resonant

energies,38 Ē0l=E0l− i�l /2, l�1. Based on this correspon-
dence, we fix an energy E� of the closed quantum dot and

determine the resonance energy Ē0� as a solution of the equa-
tion det�1+ i��E��=0. The matrix �, Eq. �16�, is split into a
�-dependent part and a rest �� which should be a slowly
varying energy function at least around an isolated reso-
nance,

��E� = u0
�� ��� �

T

E − E�

+ ���E� . �20�

As shown in Appendix, this decomposition of � around the

resonance � leads to an expression of the S̃ matrix in which
the resonant and the background parts are separated,

S̃�E� = 2iu0
��� ��� �

T�

E − E� − Ē�

+ S̃��E� , �21�

where

�� ��E� = �1 + i���−1�� � �22�

is an infinite column vector that characterizes the resonance
�,

Ē��E� = − i�� �
T · �� � �23�

is a complex function which assures the analyticity of the
current scattering matrix for every real energy and

S̃��E� = ��1 − 2�1 + i���−1�� �24�

is the background matrix. We have already proposed in Ref.
16 a decomposition of the scattering matrix similar to Eq.
�21� but for an effective one-dimensional scattering system
without channel mixing. While there � is a 2�2 matrix and
the inversion of 1+ i� reduces to a simple algebraic calcula-
tion, in the presence of channel coupling the inversion of an
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infinite matrix was a real mathematical challenge �see Ap-
pendix�.

Based on expression �21� of the scattering matrix, a reso-
nant theory of transport through open quantum systems can
be developed. Equation �21� allows for the calculation of the
resonance energies and for the analysis of each resonant con-
tribution to the conductance. A similar decomposition of the
transmission coefficient in a resonant term and a background
is also proposed in Ref. 22 but in that case the two contribu-
tions can be evaluated provided that the eigenvalue problem
for the effective Hamiltonian of the open system is already
solved.

Based on Eq. �21�, the position of the resonance Ē0�

=E0�− i� /2 in the complex energy plane is given as a solu-
tion of the equation

Ē − E� − Ē��Ē� = 0, �25�

which can be solved numerically very fast using an iterative

procedure starting with Ē=E�. The complex function Ē��E�,
Eq. �23�, contains contributions from all Wigner-Eisenbud
energies and from all scattering channels, i.e., all matrix el-

ements of K. Thus, the resonance energy Ē0� can totally
differ from E� and only in the case of a very low coupling of
the dot to the contacts, E� can properly approximate the real

part of the resonance energy Ē0�. With each resonance one
can associate a resonance domain, which is a circle of radius

�� around Ē0� in the complex energy plane. The resonance
energies for the quantum dot shown in Fig. 1 are plotted in
Fig. 3 together with the Wigner-Eisenbud energies. The geo-
metrical parameters used for the numerical calculations were
taken from the electron micrograph of the SET analyzed in
Ref. 6: 2dx=2dy =175 nm, db�35 nm so that the electrons
are confined within a domain of about 100 nm in diameter
and the point contact regions are about 35 nm�35 nm. The
density of 2DEG is NS=8.1�1011 cm−2 and the Fermi en-
ergy EF=29.6 meV. The confining barrier was considered
Vb0=100 meV and in the point contact regions it was taken
Vb1=Vb2=2.5 meV; In the source and drain contacts V1

�V2=0. At each interface between two domains the poten-
tial energy varies linearly within a distance of 10 nm. For the
numerical calculation we fixed the number of the scattering
channels to N1=N2=NF=12, where NF is the number of the
conducting channels at the Fermi energy. The analyzed scat-
tering potential is not attractive and, in turn, it is not ex-
pected that the evanescent channels play an important role.39

Numerically, the inclusion of the evanescent channels has
not produced significant variations in the conductance. In
Ref. 31 a detailed discussion is presented about the scattering
potentials that allow for evanescent modes and the influence
of these modes on the total transmission.

As can be seen from Fig. 3, the open quantum dot
strongly coupled to the source and drain contacts supports
resonances with different widths, from very narrow, gener-
ally associated with modes localized within the dot region, to
very wide. This phenomenon is known in the literature as
resonance trapping:23,24 only certain states of an open quan-
tum system with overlapping resonances couple with the en-
vironment and their widths increase with increasing the
strength of the coupling while the other ones are more or less
decoupled from the continuum.23,24 As illustrated in Fig. 3,
for the quantum dot considered here there exist a few reso-
nances with a long lifetime but the majority of the resonant
states couple to the contacts. This process is controlled by
the number of the conducting channels according to Refs. 23
and 24. In the strong-coupling regime N1�E�+N2�E� resonant
states couple to the environment becoming quasidelocalized.
As shown in Sec. II, this number is energy dependent and
increases with increasing E. This result is physically correct
because the poles of the scattering matrix with a real part
much higher than the scattering potential, E�max�V�x ,y��,
have also a large imaginary part irrespective of the potential
landscape.

The decomposition, Eq. �21�, of the scattering matrix S̃ in
a resonant and a background term is especially relevant for
energies inside a resonance domain. According to Eq. �21�
all matrix elements of S̃ and, in turn, all transmission coef-
ficients Tnn� between the scattering channels have a similar
dependence on energy around a resonance. In Fig. 4 we plot
the transmission between the channel �11� and the channels
�2n�, n�NF for energies around a fixed isolated resonance.
In the case of a symmetrical system the parity plays an im-
portant role. For the odd quantum number n the function

n�y� has the same symmetry as 
1�y�, and the transmission
coefficient T1n has a maximum around the resonance. If the
parity is not conserved the transmission is forbidden, i.e.,
T1n�0, n=2,4 , . . . The plots in Fig. 4 confirm the similar
energy dependence of the transmission coefficients and we
can conclude that a resonance can be completely character-
ized by the sum of these coefficients, i.e., by the total trans-
mission. In Ref. 20 a similar idea was proposed and a global
Fano asymmetry parameter was defined as a linear combina-
tion of the parameters corresponding to different scattering
channels.

The plot of the transmission coefficients, Fig. 4, shows a
strong-coupling between the scattering channels in the Fano
regime of transport. The two quantum point contacts, specific
for the SET geometry,4,6 control the strength of the coupling
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filled symbols� of the open quantum dot given in Fig. 1 with Vd

=0.0255124 eV and real eigenenergies E� �black empty symbols�
of the corresponding closed dot.

RACEC, WULF, AND RACEC PHYSICAL REVIEW B 82, 085313 �2010�

085313-6



with the rest of the quantum wire and confer the scattering
potential its nonseparable character responsible for the chan-
nel mixing. In this case, a resonance cannot be associated
anymore with a single-scattering channel as proposed in the
models based on the Feshbach formalism in Refs. 21 and 40.
The resonance perturbation theory21 used there to describe
the coupling between the scattering channels can have limi-
tations for large coupling strength and becomes certainly
very laborious for a system with many conducting channels.
In our model the 2D Schrödinger equation is directly solved
combining the scattering theory with the R-matrix formalism
and this method can be used to describe each coupling re-
gime.

IV. CONDUCTANCE THROUGH OPEN QUANTUM DOTS

The most common method to analyze experimentally a
quantum dot is to measure its conductance. In the limits of
the Landauer-Büttiker formalism34,35 and for very low tem-
peratures, the linear conductance is given as the total trans-
mission through the dot at the Fermi energy,

G�Vd� =
2e2

h
T�EF;Vd� �26�

for different values of the potential energy in the dot region.
Each variation in Vd changes the scattering potential and, in
turn, the total transmission.

In Figs. 5�a�, 6�a�, and 7�a� the conductance is plotted as
a function of EF−Vd for the quantum dot presented in Fig. 1
with the parameter given in Sec. III The conductance shows
peaks with line shapes from symmetric Breit-Wigner up to
strong asymmetric ones and even dips or antiresonances.
These maxima and minima are usually associated with reso-
nances. Some peaks in the conductance reach values greater
than 1 and that means that at least two resonances interplay
to determine the line shape.

We analyze further in detail, in terms of resonances, each
type of peak and dip of the conductance. For this purpose we
need a functional dependence of the total transmission on Vd,
at least an approximation, around the peak maximum V0. In
the case of a dip in the conductance, V0 denotes the position
of the minimum. The R-matrix formalism used for solving
the scattering problem allows, in a sense, for a very intuitive
approach of T�EF ,Vd�. A small variation 	V=Vd−V0 of the
potential energy felt by the electron in the dot region can be
approximately seen as a shift of the potential energy in the
whole scattering area. In turn, the Wigner-Eisenbud energies
are shifted with 	V and the Wigner-Eisenbud functions re-
main unchanged. For the R matrix, Eq. �12�, we can then
write R�E ;V0+	V��R�E−	V ;V0�. This approximation is
also valid for the total transmission

T�EF;V0 + 	V� � T�EF − 	V;V0� �27�

because the wave vector ksn is a slowly varying energy func-
tion. A detailed discussion about this approach is given in
Ref. 16, Appendix for the open quantum dot without channel
mixing.

Based on relation �27�, each peak in conductance can be
associated with one or more resonances. We consider first an

isolated resonance with the complex energy Ē0�=E0�

− i�� /2. The total transmission shows a peak around E0� that
can be also seen in conductance if E0� matches the Fermi
energy, E0�=EF. Therefore, a maximum in conductance at
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Vd=V0� corresponds to a resonance � and the quantity EF
−V0� gives the position of the resonance energy with respect
to Vd. In this way the resonance energies can be directly
compared with the eigenenergies of the isolated quantum
dot. In view of the experiments presented in Ref. 6, this is a
square dot with the dimension 2d�2d, d=dx−db, confined
by a hard-wall potential as depicted in Fig. 2�b�. Its eigenen-
ergies

Ẽnx,ny
= Vd +

�2

2m�� �

2d
�2

�nx
2 + ny

2�, nx,ny � 1 �28�

are plotted in Figs. 5�b�, 6�b�, and 7�b�. The positions of the
resonance energies are indicated by dashed lines in Figs.
5�a�, 6�a�, and 7�a�. As can be seen from these plots, the open
character of the quantum system determines a shift of the
eigenenergies in the complex energy plane, not only on the
imaginary axis but also on the real axis. Due to the two
quantum point contacts, which couple the quantum dot to the
source and drain, the symmetry of the square dot is broken
and the level degeneracy for nx�ny is lifted.

A deep understanding of the transport properties through
the open quantum dot requires a detailed analysis of the elec-
tron probability distribution density within the dot region and
the comparison of the resonance energies of the open dot
with the eigenenergies of the isolated dot.41 In the upper part

of Figs. 5�a�, 6�a�, and 7�a� the functions ��n
�1��EF ;x ,y��2, n

=1 or n=2, are given for x and y inside the scattering area
and for Vd corresponding to the maxima and minima in the
conductance. These functions are called resonant states or

resonant modes. For comparison the eigenstates ��̃nx,ny
�x ,y��2

of the isolated dot �see Fig. 2�b�� are presented in Figs. 5�b�,
6�b�, and 7�b�, where

�̃nx,ny
�x,y� =

1

d
sin��nx

2d
�x + d�	sin��ny

2d
�y + d�	 , �29�

nx�1 and ny �1. The function ��̃nx,ny
�x ,y��2 has nx maxima

in the x direction and ny maxima in the y direction. All
modes �nx ,ny� that we know from the isolated dot are also
found for the open dot. Some of them are strongly modified
due to the coupling with the contacts but there are also
modes that do not change much. Based on the similarities of
the scattering functions at the resonance energy,
��n

�s��EF ;x ,y��2 for Vd=V0� for which E0�=EF, to the eigen-

functions ��̃nx,ny
�x ,y��2 of the isolated dot, we associate fur-

ther a pair of quantum numbers �nx ,ny� with each resonance

�, and the resonance energies Ē0� will be further on denoted

by Ē0
�nx,ny�=E0

�nx,ny�− i��nx,ny� /2. The potential energy in the
dot region V0�, for which E0

�nx,ny� matches the Fermi energy,
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will be denoted by V0
�nx,ny�. In this way the resonances are

classified using a very intuitive criterion.

A. Peaks associated with isolated resonances

First we analyze the slight asymmetric conductance peaks
associated with an isolated resonance denoted by � or by
�nx ,ny�. In the energy domain of this resonance the scattering

matrix S̃ is given as a sum of a resonant term and a back-
ground, Eq. �21�. Based on this relation and on the definition,
Eq. �19�, the total transmission can be similarly decomposed.
According to relation �27� and for small variation 	V of the
potential energy around V0� �for which E0��EF�, the con-
ductance, Eq. �26�, follows the energy dependence of the
transmission and becomes

G�V0� + 	V� � Gres�EF − 	V;V0�� + Gbg�EF − 	V;V0�� .

�30�

The resonant contribution to the conductance is an energy-
dependent function defined for each value of the potential
energy in the dot region as

Gres�E;Vd� =
2e2

h
T0��E��� 2i

E − E� − Ē��E�
−

1

q̄��E��2

− � 1

q̄��E��2	 �31�

with

T0��E� = ��� 1��2��� 2��2 �32�

and the energy-dependent Fano asymmetry parameter19

1

q̄��E�
=

1

T0�

�� 1�
† ���� 2�

� , �33�

where ��� s��n= ��� ��sn, s=1,2 and ����nn�= �S̃��2n,1n�, n ,n�
�1; The symbol � denotes the complex conjugate. The
background contribution to the conductance is given as

Gbg�E� =
2e2

h
Tr����E���

†�E�� . �34�

The functions Gres and Gbg are obtained from expression
�21� of the scattering matrix without any approximation.

The first contribution to the conductance, Gres, contains a

resonant term singular at E= Ē0� and a term 1 / q̄� that de-
scribes the coupling of the resonance �, characterized by the
vector �� �, to the other resonances, characterized by the back-
ground matrix ��. The function Gres yields always a peak
mainly localized in the resonance domain. Due to the cou-
pling of the considered resonance with the other ones, this
peak cannot have, in principle, a Breit-Wigner line shape,
even in the case of a narrow and isolated resonance; The
lowest approximation for a resonant peak is a Fano line
shape with a complex asymmetry parameter obtained for
q̄��E��constant. The two terms add coherently to the con-
ductance and it is usual to call Gres the coherent part.16 The
second contribution to the conductance is the noncoherent
part16 given only by the background matrix ���E�. In the
case of an isolated resonance �, it is expected that Gbg is
almost constant inside the resonance domain.

The conductance curve given in Figs. 5�a�, 6�a�, and 7�a�
shows two peaks that can be associated with isolated reso-
nances. They correspond to the resonances �1,1� and �2,2� as
follows from the analysis of the electron probability distri-
bution density in the dot region �first and third maps in Fig.
5�a��. For these two peaks the resonant and the background
contributions to the conductance are plotted in Fig. 8. As
expected, the resonant part is given by a slight asymmetric
Fano line and the background is almost constant. But, unex-
pected is the fact that the two peaks are quite wide compared
to the other ones in the conductance curve. The only possible
explanation is related to the presence of the quantum point
contacts, which modify dramatically the scattering process
and the picture which we have from the effective 1D scatter-
ing problem is no longer valid. In the case of the quantum
dot studied here, the coupling between the scattering chan-
nels dominates the transmission through the dot and the scat-
tering problem cannot be anymore reduced to a series of 1D
problems. In turn, in the presence of the channel mixing the
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resonance widths do not increase monotonically with the en-
ergy.

As can be seen in Fig. 8, near the main resonances �1,1�
and �2,2�, there exist other ones denoted by “a.” They are
broader, i.e., larger imaginary part, and are associated with
modes localized mainly in the region of the two quantum
point contacts, as shown in Fig. 9. The resonances of type a
do not influence directly the transmission through the open
quantum dot but they play a decisive role in the coupling
process of an eigenstate to the continuum of states in the
contacts. There are many modes localized in the point con-
tact regions with the resonant energies around the Fermi en-
ergy but only for a favorable symmetry they can intermediate
a coupling between the quantum system and the source and
drain contacts. The probability distribution densities given in
Fig. 9 shows evidently a coupling of the modes of type a
with the resonant modes �1,1� and �2,2�. In this case, one can
speak about an interaction between the two types of reso-
nances. In the next section we will study this phenomenon
for resonances localized within the dot region, which are
very close in energy and have the same symmetry in the
lateral direction.

B. Peaks associated with overlapping resonances

Even in the case of a simple dot geometry, there exist only
a few isolated resonances. The other peaks in the conduc-
tance with strong asymmetric line shapes or maximum val-
ues about 2 are typical for the scattering processes dominated
by two or more resonances, whose resonance domains cross,
i.e., overlapping resonances. How strong the overlapping
resonances interact is determined by their relative position in
energy41 and by their symmetry in the lateral direction21

�perpendicular to the transport direction�.
Let assume that there exists a second resonance ��

��nx� ,ny�� around the Fermi energy, i.e., in the vicinity of the
first resonance ���nx ,ny� and this is a broader one, ���
���. The presence of the second resonance leads to a strong

variation in the background term S̃� with the energy around

EF. The expression of S̃�, Eq. �24�, similar to S̃, Eq. �15�,
allows for a further decomposition of this term in a second
resonant term and a new background. Following the method
described in Sec. III, we can write

S̃��E� = 2iu0
��� ���� ��

T�

E − E�� − Ē��
+ S̃���E� , �35�

where �� ��, Ē���E�, and S̃�� can be obtained from �� �, Ē��E�, and

S̃�, Eqs. �22�–�24�, respectively, by replacing �� � by �� �� and

�� by ���=��−u0
�� ���� ��

T

E−E��
. Thus, the background contribution

of the first resonance to the conductance, Eq. �34�, becomes
a sum of two contributions,

Gbg�EF;Vd� = Gres� �EF;Vd� + Gbg� �EF;Vd� , �36�

a resonant one,

Gres� �E;Vd� =
2e2

h
T0�� �E��� 2i

E − E�� − Ē���E�
−

1

q̄���E��2

− � 1

q̄���E��2	 �37�

with a similar energy dependence as Gres�E ;Vd� and a sec-
ond background,

Gbg� �E;Vd� =
2e2

h
Tr�����E����

†�E�� �38�

with �����nn�= �S̃���2n,1n�, n ,n��1, slowly varying with the
energy if a third resonance does not exist around EF. The
energy-dependent Fano asymmetry parameter q̄���E� in Eq.
�37�, associated with the resonance ��, has the expression

1

q̄���E�
=

1

T0��
�� 1��

†����� 2��
� , �39�

where T0�� �E�= ��� 1�� �2��� 2�� �2 and ��� s�� �n= ��� ���sn, s=1,2, n�1.
Expression �36� is also exact and we have only rearranged
the terms in order to put directly in evidence the contribu-
tions of each resonance to the conductance. The second
background term, Gbg� , gives the possibility of a further de-
composition in a third resonant term and a new background
in the case of three interacting resonances around the Fermi
energy.

For a systematic mathematical calculation we have also to
consider the energy dependence of ��, Eq. �35�, in expres-
sion �33� of the Fano asymmetry parameter associated with
the first resonance,

1

q̄�

=
1

T0�
��� 1�

† ����� 2�
� + 2iu0

�� 1�
† · �� 1�� �� 2�

† · �� 2��

E − E�� − Ē��
	 . �40�

The function 1 / q̄� is responsible for the asymmetry of the
resonant contribution Gres, Eq. �31�, that has a singularity at

Ē= Ē0�. The presence of a second resonance �� around �

yields in 1 / q̄� a term singular at Ē= Ē0��.
If the first resonance is very narrow and the second one

broaden, ������, the Fano asymmetry parameter 1 / q̄� var-
ies slowly with the energy compared to the term in Gres

singular at Ē= Ē0�. In this case, the energy dependence of
1 / q̄� can be neglected around the resonance � and an energy-
independent Fano asymmetry parameter can be defined.
These results are in agreement with Ref. 19. The resonant
contribution to the conductance is then given as a Fano
function26 f�e�= �e+ q̄F�2 / �e2+1� with a complex asymmetry
parameter q̄F. For �1 / q̄F��1 this function has a quasi-Breit-
Wigner profile, while for �1 / q̄F��1 it becomes a symmetric
dip, usually called antiresonance. The intermediate values

(b)(a) (c) (d)

FIG. 9. �Color online� Electron probability distribution densi-
ties: �a� ��1

�1��x ,y��2 and �b� ��1
�2��x ,y��2 for the mode associated

with the resonance a in Fig. 8�a�; �c� ��2
�1��x ,y��2, and �d�

��2
�2��x ,y��2 for the mode associated with the resonance a in Fig.

8�b�.

RACEC, WULF, AND RACEC PHYSICAL REVIEW B 82, 085313 �2010�

085313-10



�1 / q̄F��1 correspond to a Fano function characterized by a
maximum and a minimum approximately equidistant to the
axis e=1 and we call this profile a S-type Fano line. For open
quantum dots, the different Fano profiles can be associated
with different types of interacting resonances. From Eq. �40�
it follows that q̄���� � ·�� �� for a second resonance much
broader than the first one. The two vectors �� � and �� ��, char-
acterize the resonances � and ��, and their scalar product is,
in principle, nonzero. If the two resonant modes have differ-
ent parities in the lateral direction, the vectors �� � and �� �� are
approximately orthogonal to each other and, in turn, the Fano
asymmetry parameter has values from small to intermediate.
In this case, we can speak about a weak interaction between
overlapping resonances. In contrast, for the same parity in
the lateral direction, the vectors �� � and �� �� are approximately
parallel to each other and the Fano asymmetry parameter
corresponds to a dip. In this case, the two overlapping reso-
nances interact strongly. In Ref. 21 the antiresonances in the
conductance through two identical quantum dots embedded
in a waveguide were also related to strong interacting reso-
nances with the same parity.

In the case of two overlapping resonances with compa-

rable widths, both the term in Gres singular at Ē= Ē0� and the
Fano asymmetry parameter, Eq. �40�, vary slowly with the
energy and we cannot predict the line shape around the reso-
nances. This situation corresponds to a wide peak in the con-
ductance.

Summarizing all the above results and using the approxi-
mative expression of the total transmission around a reso-
nance at the Fermi energy, Eq. �27�, we obtain for the con-
ductance

G�V0� + 	V� � Gres�EF − 	V;V0�� + Gres� �EF − 	V;V0��

+ Gbg� �EF − 	V;V0�� , �41�

where V0
�nx,ny�=V0� is the potential energy in the dot region

for which the resonance with the longest lifetime ���

����� matches the Fermi energy. Based on the above rela-
tion, we identify the contribution of each resonance to the

conductance and distinguish between weak- and strong-
coupling regimes of two overlapping resonances. The infor-
mation about the strength of the coupling between the reso-
nances ���nx ,ny� and ����nx� ,ny�� is contained into the
energy-dependent Fano asymmetry parameter, Eq. �33�, and
it determines the line shape of the resonant contribution Gres
to the conductance. The other two components of the con-
ductance, Gres� and Gbg� , provide information about the inter-
action of the second resonance �nx� ,ny�� with all other reso-
nances of the system excepting the two already considered.
A strong variation with the energy of the function Gbg� in the
energy domain of the resonance �nx� ,ny�� indicates the pres-
ence of a third resonance �nx� ,ny�� around the Fermi energy.
From the line shape of the resonant component Gres� we can,
in principle, get the information about how strong this third
resonance interacts with the resonance �nx� ,ny��.

1. Weak interacting resonances

In the weak interaction regime the two overlapping reso-
nances are close in energy but they do not perturb each other
significantly. Each of them contributes to the conductance as
a quasi-isolated resonance and the line shape of the peak is
given as a superposition of two Fano lines with a slight up to
an intermediate asymmetry. This is the case of the second
peak in Fig. 5�a� and the first peak in Fig. 6�a�, for which the
different contributions to the conductance are analyzed in
detail in Fig. 10. The two peaks correspond to the pairs of
resonances �1,2� and �2,1�, and �2,3� and �3,2�.

In both situations the overlapping resonances have at the
origin a degenerate eigenstate of the isolated dot presented in
Fig. 2�b� with different symmetries in the x and y directions.
The two quantum point contacts �Vb1 and Vb2�, responsible
for the strong-coupling regime to the conducting leads, break
the square symmetry of the isolated dot. In turn, the degen-
eracy is lifted when the quantum dot becomes open and, with
increasing the coupling strength, the degenerate energy level
evolves into two resonances that repulse each other in the
complex energy plane. This phenomenon is illustrated in the
lower part of Fig. 10. The first case corresponds to the reso-
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nance trapping23,24 and the second one to the level
repulsion.23,24 Due to the trapping, the resonance �1,2� has a
longer lifetime and a resonant state almost localized inside
the dot region, while the resonance �2,1� has a shorter life-
time and shows a significant probability distribution density
in the region of the two quantum point contacts. The state
with the nearest maximum to the aperture couples stronger to
the contacts and yields a broader contribution to the conduc-
tance compared to the first resonance. Both of them are de-
scribed by Fano lines with a slight asymmetry corresponding
to a weak interaction between the overlapping resonances
and with the background. Figure 10�b� shows the resonances
�2,3� and �3,2�, which have comparable widths and are well
separated in energy. From the probability distribution density
of these two modes, Fig. 6�a�, it is evident that both of them
can easy couple to the modes localized in the point contact
regions, presented in Fig. 9. In this case, the resonance trap-
ping is not favorable. The line shape of Gres corresponds to a
weak interaction between the resonances �2,3� and �3,2�; Gres�
indicates a stronger interaction of the second resonance with
the background. The total contribution to the conductance
yields in each situation a peak with a maximum about 2.

In conclusion, the weak-coupling regime between over-
lapping resonances is characterized by probability distribu-
tion densities within the dot region similar to the eigenstates
of the isolated dot. According to this rule, the resonances
�1,4� and �4,1�, and �3,4� and �4,3� are also weak coupled
with each other, but, as we will see in the next section, in
each case there is a strong coupling with another neighbor
resonance which modifies the probability distribution density
of the states �4,1� and �4,3�, respectively. The last peak in
Fig. 7�a� corresponds to the resonances �2,5� and �5,2� that
interact also weakly and have a similar behavior to the pair
�2,3� and �3,2�.

2. Strong interacting resonances. Hybrid modes

The physics of the scattering process can be seen in the
case of a strong interaction between the overlapping reso-
nances, phenomenon that does not occur in the case of an

effective 1D quantum dot.16 This coupling regime is respon-
sible for thin or strong asymmetric peaks and dips in con-
ductance and for resonant states whose probability distribu-
tion densities differ strongly from the corresponding
eigenstates of the isolated dot. Particularly for the SET ge-
ometry, Fig. 1, the strong coupling of the quantum dot to the
environment is always accompanied by a strong scattering
between the energy channels. This supplementary scattering
determines the reordering process of the resonances in the
complex energy plane, i.e., the interaction between overlap-
ping resonances. The channel mixing influences especially
the eigenstates with the same symmetry in the lateral direc-
tion. Due to the favorable parity, these modes couple with
each other and generate new resonant modes that cannot be
supported by the isolated dot. As seen in Figs. 5–7, there are
two categories of strong-coupled resonances: the first ones
are the resonances that correspond to eigenstates with the
same symmetry in the x and y directions and whose resonant
states are hybrid modes, similar to the hybrid orbitals of the
natural atoms. The resonances �1,3� and �3,1�, �2,4� and
�4,2�, and �1,5� and �5,1� belong to this category. The second
category includes resonances corresponding to eigenstates
with the same symmetry only in the lateral direction �y di-
rection� like the pairs �4,1� and �3,3�, and �4,3� and �5,1�. We
associate these resonances with a strong interaction because
the probability distribution densities for the states �4,1� and
�5,1� are drastically modified in comparison with the isolated
case.

The modes associated with strong interacting resonances
yield dips or S-type Fano lines in the conductance, super-
posed on the top of broad peaks, as shown in Figs. 5�a�, 6�a�,
and 7�a�. The overlapping resonance pairs �1,3� and �3,1�,
and �2,4� and �4,2� are analyzed in detail in Fig. 11. The
strong interaction of these resonances, reflected by the dips
in Gres, has as an effect their strong repulsion in the complex
energy plane. In turn, the resonant modes �1,3� and �2,4�
become long lived and are practically localized within the
dot region while the modes �3,1� and �4,2� couple stronger to
the contacts and have shorter lifetime. The electron distribu-
tion in the dot region favors in the first case, Fig. 11�a�, a
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typical resonance trapping, while in the second case, Fig.
11�b�, this phenomenon is not so pronounced, but it is ac-
companied by a level repulsion on the real axis. The contri-
bution of the second resonance to the conductance Gres� is
described by a broad peak and the background Gbg� is almost
constant.

Each pair of strong interacting resonances analyzed above
corresponds to a degenerate energy level of the isolated dot
and their probability distribution densities are practically lin-
ear combinations of the two eigenfunctions of the degenerate
level. This property can be easy seen in Fig. 6�a� for the
resonances �2,4� and �4,2�. We can speak in this case about
hybrid resonant modes. The open quantum dot behaves like
the oxygen atom in the water molecule: due to the interaction
with the hydrogen atoms, the s and p orbitals of the oxygen
are mixed to new hybrid orbitals so that the total energy of
the molecule is minimal. Similar, the coupling of the quan-
tum dot to the contacts by means of two quantum point con-
tacts yields a supplementary scattering potential which al-
lows for new resonant modes. They are not states which
survive the coupling process to the contacts,41 but rather new
hybrid states, whose existence is directly connected to the
presence of the strong-coupling regime. These modes offer
the possibility of engineering quantum systems with complex
properties. Even in the case of a nonperfect square quantum
dot the above results remain valid. A small difference be-
tween dx and dy yields instead of a degenerate level two very
close eigenvalues. Essential for the strong interaction of the
two corresponding resonances is the same parity of the reso-
nant states on both directions and not the initial degeneracy.

The resonances �1,5� and �5,1� interact also strongly. They
determine in the conductance a very thin S-type Fano line
superposed onto an extreme broad peak as shown in Fig.
12�b�. Their stronger repulsion in the complex energy plane
compared to the precedent cases �Fig. 11� is determined by a
supplemental strong interaction of the resonances �5,1� and
�4,3�, which have the same parity in the lateral direction. The

maps of the probability distribution densities for the two
modes in Fig. 7�a� confirm also the phenomenon of hybrid-
ization. The resonant modes �4,3� and �5,1� do not show such
a high symmetry as the modes �2,4� and �4,2� but it is evi-
dent that they can be obtained as a linear combination of the
eigenfunctions �4,3� and �5,1� of the isolated dot and the
mode �4,3� dominates this combination. The multiple inter-
actions between neighbor resonances with the same symme-
try in the lateral direction amplify the phenomenon of reso-
nance trapping. One resonance, in this case resonance �1,5�,
decouples from the contacts and becomes extreme long
lived, while the other two become broaden and show a sig-
nificant separation in energy. If we consider the quantum dot
as an artificial atom it is easy to accept the hybridization as a
natural process determined by the interaction with another
system but the existence of very narrow resonances sup-
ported by an open quantum dot seems to be a paradox: it is
necessary to open a quantum dot, i.e., to allow for regions
where the direct electron transfer between dot and contacts is
possible, in order to obtain strongly localized states. Hence,
long-lived modes of a quantum system can be obtained either
in a quasi-isolated quantum dot or in a dot confined by shal-
low barriers engineered in such a way that the scattering
channels are strongly mixed. The two types of localized
modes have different fingerprints in the conductance: in the
first case they yield quasisymmetric maxima while in the
second case strong asymmetric Fano lines appear on top of
broad peaks.

The last sequence to be discussed corresponds to the reso-
nances �1,4�, �4,1�, and �3,3� in Fig. 6�a�. As can be seen
from the probability distribution density maps in Fig. 6�a�,
there are three interacting resonances with different coupling
strengths; �1,4� and �4,1� interact weakly and yield two slight
asymmetric maxima in the conductance, one of them quite
thin and the other one broad, Fig. 12�a�. In contrast, the
resonances �4,1� and �3,3� interact strongly and the resonant
contribution of �3,3� is a broad dip. The three interacting
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resonances �4,1�, �3,3�, and �1,4� are very interesting in view
of the experiments presented in Ref. 6. Their contribution to
the conductance, Fig. 6�a� for EF−Vd� �0.008,0.010� eV,
together with the next peak determined by the resonances
�2,4� and �4,2�, Fig. 6�a� for EF−Vd� �0.010,0.011� eV, ap-
proximate qualitatively very well the conductance curve
given in Ref. 6, Fig. 2�a�, for the quantum dot in the Fano
regime. Based on our resonance analysis we can conclude
that the first thin peak in the measured conductance curve is
superimposed on the top of a second broad peak and they
correspond to two weak interacting resonances with different
symmetries in the lateral direction. The next dip in the mea-
sured conductance reflects the presence of a resonance of
type �n ,n� that interacts strongly with only one of the neigh-
bor resonances. The following S-type Fano line is again su-
perimposed on a broad peak and indicates the presence of
two strong interacting resonances with the same symmetry in
the lateral and transport directions. For a quantitative analy-
sis of the conductance we have to determine from the charge
analysis within the dot region the value interval of Vd that
corresponds to the number of electrons found
experimentally.6

V. CONCLUSIONS

We have provided in this paper a systematic treatment of
the conductance through a quantum dot strongly coupled to
wide conducting leads via short quantum point contacts. The
electronic transport through this type of dots is essentially a
scattering process in a low confining potential, which re-
quires a direct solution of the two-dimensional Schrödinger
equation with a nonseparable scattering potential. For this
purpose, we have used a generalized scattering theory that
allows for a complete description inside and outside the scat-
tering area and is based on the R-matrix formalism. The
resonances are determined as poles of the multidimensional
scattering matrix, which contains the information about
channel mixing due to the nonseparable scattering potential.
The strong coupling of the quantum dot to the environment
yields overlapping resonances, which show a significant in-
teraction with each other in the case of a favorable parity of
the corresponding resonant states.

The conductance is determined as a function of the poten-
tial energy within the dot region and every peak in conduc-
tance is associated with a resonance or a group of overlap-
ping resonances. Based on the representation of the
scattering matrix in terms of the R matrix we provide for
each peak an exact decomposition of the conductance in
resonant terms associated with each of the overlapping reso-
nances and a background. The decomposition is hierarchical,
i.e., from the strongest to the broadest resonance, and allows
for a deep understanding of the phenomena, which determine
the transmission in the case of interacting resonances. The
resonant states characterizing the open quantum dot in the
Fano regime are presented in comparison with the eigen-
states of the isolated dot. Every resonant state has a corre-
spondent between these eigenstates and, we distinguish be-
tween slight and strong modified states due to the coupling
with the environment. The last ones are called hybrid reso-

nant modes, and they occur only in the case of a strong-
coupling regime of the quantum dot to the contacts, as an
effect of the interaction between resonances with the same
parity. The phenomenon of hybridization evidenced here for
the quantum dots in the Fano regime of transport attests the
moleculelike behavior of this system and opens the possibil-
ity to realize artificial molecules based on semiconductor
nanostructures. The conductance through the quantum dot in
the Fano regime of transport is also compared qualitatively
to the experimental data reported in Ref. 6.
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APPENDIX: POLES OF THE S̃ MATRIX

The starting point for our pole analysis is the expression

of the nonconstant part in the S̃ matrix in terms of A�

=�� �
T ·�� � / �E−E�� and ��,

1 + i� = �1 + iA���1 + i��� . �A1�

Using the definition of �� �, Eq. �22�, we can immediately
demonstrate that each determinant of the second order of A�

is zero, �A��ij�A��lp− �A��ip�A��lj =0, where each index
i , j , l , p is a composite index �sn� with s=1,2, n�1. There-
fore, the matrix A� has the rank 1. On this basis we find that

det�1 + iA�� = 1 + i Tr�A�� . �A2�

In order to demonstrate the above relation we consider a M
�M matrix A, M �2, with Rank�A�=1, and, using the defi-
nition of the determinant, we find

det�1 + A� = 1 + AMM + ¯ + A11 + �AM−1M−1 AM−1M

AMM−1 AMM
�

+ ¯ + det�A� . �A3�

The condition Rank�A�=1 ensures that all determinants of A
up to the second order are zero. This result does not depend
explicitly on the matrix dimension M so that we can gener-
alize it for the case M→� and obtain Eq. �A2�.

In the next step we calculate the adjugate matrix of 1
+A, i.e., 1+A=det�1+A��1+A�−1, in order to invert it. For a
given pair of indices ij the corresponding matrix element of
1+A is calculated as the product of �−1�i+j and the minor ij
of �1+A�T. Thus, for i= j we obtain

�1 + A�ii = det�1 + Bii� , �A4�

where Bii is obtained from AT by removing the row i and the
column i. The matrix Bii is a �M −1�� �M −1� matrix with
the rank 1 and therefore

�1 + A�ii = 1 + Tr�Bii� = 1 + Tr�A� − Aii. �A5�

In the case j= i+1 we find
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�1 + A�ii+1 = − det�Ii + Bii+1� , �A6�

where �M −1�� �M −1� matrix Ii is obtained from the unity
matrix by changing 1 on the position ii with 0, �i�M� and
Bii+1 is the matrix obtained from A by removing the ith row
and the �i+1�th column. This is a �M −1�� �M −1� matrix
and has the rank 1. The matrix element ii of Bii+1 is Aii+1.
Further we write explicitly the determinant as a sum over all
permutation of the numbers �1, . . . ,M −1�,

det�Ii + Bii+1� = �
�M−1

sgn �M−1�	1m1
+ b1m1

� ¯ �	i−1mi−1

+ bi−1mi−1
�bimi

�	i+1mi+1

+ bi+1mi+1
� ¯ �	M−1mM−1

+ bM−1mM−1
� ,

where bjl, with j , l=1,M −1, means the matrix element jl of
Bii+1. Replacing bimi

by 	imi
+bimi

−	imi
allows us to express

�1+A�ii+1 as det�1+Bii+1� minus the minor ii of Ii+Bii+1.
The last two determinants can be calculated using Eq. �A2�
because the corresponding matrices are a sum of the unity
matrix and a part of A matrix which has the property
Rank�A�=1. Thus, we find

det�Ii + Bii+1� = 1 + �
j=1

M−1

bjj − �1 + �
j=1

i−1

bjj + �
j=i+1

M−1

bjj	
�A7�

and after that

�1 + A�ii+1 = − Aii+1. �A8�

Further we analyze the case j� i+1. If we eliminate the ith
row and the jth column in �1+A�T we obtain a matrix which
does not have any more elements of the type 1+all on the

main diagonal between the column i and j−1. These ele-
ments are on the positions l−1l, l= i+1, j−2. Taking into
account that we only need to calculate the determinant of this
matrix we exchange the columns: i↔ i+1, . . . , j−2↔ j−1
and each of these j− i−1 operations changes the determinant
with −1. So that we can write

�1 + A�ij = �− 1�i+j+j−i−1det�I j−1 + Bij� . �A9�

As described above the matrix Bij is obtained from AT by
removing the ith row and the jth column and after that by
exchanging the columns i↔ i+1, . . . , j−2↔ j−1. This �M
−1�� �M −1� matrix has also rank 1 and �Bij� j−1j−1=Aij. It
results that

�1 + A�ij = − Aij . �A10�

Similarly we can demonstrate the validity of the above result
for j� i.

If we put together the main results of this section, Eqs.
�A2�, �A5�, �A8�, and �A10�, we find

�1 + A�−1 = 1 −
A

1 + Tr�A�
. �A11�

The above relation does not depend essentially on M, so that
we can take the limit M→� and generalize Eq. �A11� for
iA�. After that we obtain from Eq. �A1� that

�1 + i��−1 = �1 + i���−1�1 −
iA�

1 + i Tr�A��� . �A12�

Feeding this relation into the definition of S̃ matrix, Eq. �15�,
we find Eq. �21�.
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